
Computer Organization

(18EC35)

Dr. M. C. Hanumantharaju

Professor

Department of Electronics and Communication Engineering

BMS Institute of Technology and Management

Bengaluru - 560064

(mchanumantharaju@bmsit.in)

1

Module-1.

Basic Structure of Computers,

Machine Instructions and

Programs

2

Text and Reference Books

 Text Books:
 Carl Hamacher, Zvonko Vranesic, Safwat Zaky:

Computer Organization, 5th Edition, Tata McGraw
Hill, 2002.

 Carl Hamacher, Zvonko Vranesic, Safwat Zaky,
Naraig Manjikian : Computer Organization and
Embedded Systems, 6th Edition, Tata McGraw Hill,
2012.

 Reference Books:
 William Stallings: Computer Organization &

Architecture, 9th Edition, Pearson, 2015.

3

The Computer Revolution

 Progress in computer technology

 Underpinned by Moore’s Law

 Makes novel applications feasible

 Computers in automobiles

 Cell phones

 Human genome project

 World Wide Web

 Search Engines

 Computers are universal

4

Classes of Computers

 Desktop/laptop computers
 General purpose, variety of software
 Subject to cost/performance tradeoff

 Workstations
 More computing power used in engg. applications, graphics etc.

 Enterprise System/ Mainframes
 Used for business data processing

 Server computers (Low End Range)
 Network based
 High capacity, performance, reliability
 Range from small servers to building sized

 Supercomputer (High End Range)
 Large scale numerical calculation such as weather forecasting, aircraft

design

 Embedded computers
 Hidden as components of systems
 Stringent power/performance/cost constraints

5

What You Will Learn

 How programs are translated into the

machine language

 And how the hardware executes them

 The hardware/software interface

 What determines program performance

 And how it can be improved

 How hardware designers improve

performance

6

Understanding Performance

 Algorithm

 Determines number of operations executed

 Programming language, compiler, architecture

 Determine number of machine instructions executed

per operation

 Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

7

Functional Units

8

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

9

Information Handled by a

Computer

 Instructions/machine instructions
 Govern the transfer of information within a computer as

well as between the computer and its I/O devices

 Specify the arithmetic and logic operations to be
performed

 Program

 Data
 Used as operands by the instructions

 Source program

 Encoded in binary code – 0 and 1

10

Memory Unit

 Store programs and data

 Two classes of storage
 Primary storage
 Fast

 Programs must be stored in memory while they are being executed

 Large number of semiconductor storage cells

 Processed in words

 Address

 RAM and memory access time

 Memory hierarchy – cache, main memory

 Secondary storage – larger and cheaper

11

Arithmetic and Logic Unit

(ALU)

 Most computer operations are executed in

ALU of the processor.

 – Load the operands into memory

 – bring them to the processor

 – perform operation in ALU

 – store the result back to memory or retain in the

processor.

 Registers

 Fast control of ALU
12

Control Unit

 All computer operations are controlled by the control
unit.

 The timing signals that govern the I/O transfers are
also generated by the control unit.

 Control unit is usually distributed throughout the
machine instead of standing alone.

 Operations of a computer:
 Accept information in the form of programs and data through an

input unit and store it in the memory

 Fetch the information stored in the memory, under program control,
into an ALU, where the information is processed

 Output the processed information through an output unit

 Control all activities inside the machine through a control unit

13

The operations of a computer

 The computer accepts information in the form of
programs and data through an input unit and
stores it in the memory.

 Information stored in the memory is fetched
under program control into an arithmetic and
logic unit, where it is processed.

 Processed information leaves the computer
through an output unit.

 All activities in the computer are directed by the
control unit.

14

Basic Operational

Concepts

15

Review

 Activity in a computer is governed by instructions.

 To perform a task, an appropriate program

consisting of a list of instructions is stored in the

memory.

 Individual instructions are brought from the memory

into the processor, which executes the specified

operations.

 Data to be used as operands are also stored in the

memory.

16

A Typical Instruction

 Add LOCA, R0

 Add the operand at memory location LOCA to the
operand in a register R0 in the processor.

 Place the sum into register R0.

 The original contents of LOCA are preserved.

 The original contents of R0 is overwritten.

 Instruction is fetched from the memory into the
processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

17

Separate Memory Access and

ALU Operation

 Load LOCA, R1

 Add R1, R0

 Whose contents will be overwritten?

18

Connection Between the

Processor and the Memory

Connections between the processor and the memory.

Processor

PC

IR

MDR

Control

ALU

R
n 1-

R
1

R
0

MAR

n-general purpose
registers

Memory

19

Registers

 Instruction register (IR)

 Program counter (PC)

 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)

 Memory data register (MDR)

20

Typical Operating Steps

 Programs reside in the memory through input
devices

 PC is set to point to the first instruction

 The contents of PC are transferred to MAR

 A Read signal is sent to the memory

 The first instruction is read out and loaded
into MDR

 The contents of MDR are transferred to IR

 Decode and execute the instruction

21

Typical Operating Steps

(Cont’)

 Get operands for ALU
 General-purpose register

 Memory (address to MAR – Read – MDR to ALU)

 Perform operation in ALU

 Store the result back
 To general-purpose register

 To memory (address to MAR, result to MDR – Write)

 During the execution, PC is
incremented to the next instruction

22

Interrupt

 Normal execution of programs may be preempted if

some device requires urgent servicing.

 The normal execution of the current program must

be interrupted – the device raises an interrupt

signal.

 Interrupt-service routine

 Current system information backup and restore (PC,

general-purpose registers, control information,

specific information)

23

Bus Structures

 There are many ways to connect different

parts inside a computer together.

 A group of lines that serves as a connecting

path for several devices is called a bus.

 Address/data/control

24

Bus Structure

 Single-bus

 Multiple Buses

25

Speed Issue

 Different devices have different

transfer/operate speed.

 If the speed of bus is bounded by the slowest

device connected to it, the efficiency will be

very low.

 How to solve this?

 A common approach – use buffers.

e.g.- Printing the characters

26

Performance

27

Performance

 The most important measure of a computer is

how quickly it can execute programs.

 Three factors affect performance:
 Hardware design

 Instruction set

 Compiler

28

Performance

 Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.
29

Performance

 The processor and a relatively small cache

memory can be fabricated on a single

integrated circuit chip.

 Speed

 Cost

 Memory management

30

Processor Clock

 Clock, clock cycle (P), and clock rate (R=1/P)

 The execution of each instruction is divided

into several steps (Basic Steps), each of

which completes in one clock cycle.

 Hertz – cycles per second

31

Basic Performance Equation

 T – processor time required to execute a program that has been
prepared in high-level language

 N – number of actual machine language instructions needed to
complete the execution (note: loop)

 S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

 R – clock rate

 Note: these are not independent to each other

 How to improve T?

 Reduce N and S, Increase R, but these affect one
another

R

SN
T

32

Pipeline and Superscalar

Operation

 Instructions are not necessarily executed one after another.

 The value of S doesn’t have to be the number of clock cycles
to execute one instruction.

 Pipelining – overlapping the execution of successive
instructions.

 Add R1, R2, R3 at the same time processor reads next
instruction in memory.

33

Pipeline and Superscalar

Operation

 Superscalar operation – multiple instruction
pipelines are implemented in the processor.

 Goal – reduce S (could become <1!)

34

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster

 Reduce the amount of processing done in one basic step
(however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

35

CISC and RISC

 Tradeoff between N and S

 A key consideration is the use of pipelining
 S is close to 1 even though the number of basic steps per

instruction may be considerably larger

 It is much easier to implement efficient pipelining in processor
with simple instruction sets

 Reduced Instruction Set Computers (RISC)
(Large value N , Small Value of S)

 Complex Instruction Set Computers (CISC)
(Small value N , Large Value of S)

36

Compiler

 A compiler translates a high-level language program

into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction

set and a compiler that makes good use of it.

 Goal – reduce N×S

 A compiler may not be designed for a specific

processor; however, a high-quality compiler is

usually designed for, and with, a specific processor.

37

Performance Measurement

 T is difficult to compute.

 Measure computer performance using benchmark programs.

 System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation)

 Reference computer

 n is the number of program in the suite

n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

38

Multiprocessors and

Multicomputers

 Multiprocessor computer
 Execute a number of different application tasks in parallel

 Execute subtasks of a single large task in parallel

 All processors have access to all of the memory – shared-memory

multiprocessor

 Cost – processors, memory units, complex interconnection networks

 Multicomputers
 Each computer only have access to its own memory

 Exchange message via a communication network – message-

passing multicomputers

39

Machine

Instructions and

Programs

40

Objectives

 Machine instructions and program execution,

including branching and subroutine call and return

operations.

 Addressing methods for accessing register and

memory operands.

 Assembly language for representing machine

instructions, data, and programs.

 Program-controlled Input/Output operations.

41

Memory Locations,

Addresses, and

Operations

42

Memory Location, Addresses,

and Operation

 Memory consists

of many millions of

storage cells,

each of which can

store 1 bit.

 Data is usually

accessed in n-bit

groups. n is called

word length.

second word

first word

Fig: Memory words.

n bits

last word

i th word

•
•
•

•
•
•

43

Memory Location, Addresses,

and Operation

 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •

44

Memory Location, Addresses,

and Operation

 To retrieve information from memory, either for one

word or one byte (8-bit), addresses for each location

are needed.

 A k-bit address memory has 2k memory locations,

namely 0 – 2k-1, called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

 32-bit memory: 232 = 4G (1G=230)

 1K(kilo)=210

 1T(tera)=240

45

Memory Location, Addresses,

and Operation

 It is impractical to assign distinct addresses

to individual bit locations in the memory.

 The most practical assignment is to have

successive addresses refer to successive

byte locations in the memory – byte-

addressable memory.

 Byte locations have addresses 0, 1, 2, … If

word length is 32 bits, they successive words

are located at addresses 0, 4, 8,…
46

Big-Endian and Little-Endian

Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant

bytes of the word

Word

address

47

8 bits 8 bits 8 bits 8 bits

Memory Location, Addresses,

and Operation

 Address ordering of bytes

 Word alignment

 Words are said to be aligned in memory if they
begin at a byte addr. that is a multiple of the num
of bytes in a word.

 16-bit word: word addresses: 0, 2, 4,….

 32-bit word: word addresses: 0, 4, 8,….

 64-bit word: word addresses: 0, 8,16,….

 Access numbers, characters, and character
strings

48

Memory Operation

 Load (or Read or Fetch)

 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

 Store (or Write)

 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

49

Instruction and

Instruction

Sequencing

50

“Must-Perform” Operations

 Data transfers between the memory and the

processor registers

 Arithmetic and logic operations on data

 Program sequencing and control

 I/O transfers

51

Register Transfer Notation

 Identify a location by a symbolic name

standing for its hardware binary address

(LOC, R0,…)

 Contents of a location are denoted by placing

square brackets around the name of the

location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

52

Assembly Language Notation

 Represent machine instructions and

programs.

 Move LOC, R1 => R1←[LOC]

 Add R1, R2, R3 => R3 ←[R1]+[R2]

53

CPU Organization

 Single Accumulator

 Result usually goes to the Accumulator

 Accumulator has to be saved to memory quite

often

 General Register

 Registers hold operands thus reduce memory

traffic

 Register bookkeeping

 Stack

 Operands and result are always in the stack
54

Instruction Formats

 Three-Address Instructions

 ADD R2, R3, R1 R1 ← [R2] + [R]3

 Two-Address Instructions

 ADD R2, R1 R1 ← [R1] + [R2]

 One-Address Instructions

 ADD M AC ← [AC] + M[AR]

 Zero-Address Instructions

 ADD TOS ← [TOS] + [TOS – 1]

 RISC Instructions

 Lots of registers. Memory is restricted to Load & Store

55

Instruction Formats

Example: Evaluate (A+B) (C+D)

 Three-Address

1. ADD A, B, R1 ; R1 ← M[A] + M[B]

2. ADD C, D, R2 ; R2 ← M[C] + M[D]

3. MUL R1, R2, X ; M[X] ← [R1] [R2]

56

Instruction Formats

Example: Evaluate (A+B) (C+D)

 Two-Address

1. MOV A, R1 ; R1 ← M[A]

2. ADD B, R1 ; R1 ← [R1] + M[B]

3. MOV C, R2 ; R2 ← M[C]

4. ADD D, R2 ; R2 ← [R2] + M[D]

5. MUL R2, R1 ; R1 ← [R1] [R2]

6. MOV R1, X ; M[X] ← [R1]

57

Instruction Formats

Example: Evaluate (A+B) (C+D)

 One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← [AC] + M[B]

3. STORE T ; M[T] ← [AC]

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← [AC] + M[D]

6. MUL T ; AC ← [AC] M[T]

7. STORE X ; M[X] ← [AC]

58

Instruction Formats
Example: Evaluate (A+B) (C+D)

 Zero-Address

1. PUSH A ; TOS ← [A]

2. PUSH B ; TOS ← [B]

3. ADD ; TOS ← [A + B]

4. PUSH C ; TOS ← [C]

5. PUSH D ; TOS ← [D]

6. ADD ; TOS ← [C + D]

7. MUL ; TOS ← [C+D][A+B]

8. POP X ; M[X] ← [TOS]
59

Instruction Formats

Example: Evaluate (A+B) (C+D)

 RISC

1. LOAD A, R1 ; R1 ← M[A]

2. LOAD B, R2 ; R2 ← M[B]

3. LOAD C, R3 ; R3 ← M[C]

4. LOAD D, R4 ; R4 ← M[D]

5. ADD R1, R2, R1 ; R1 ← [R1] + [R2]

6. ADD R3, R4, R3 ; R3 ← [R3] + [R4]

7. MUL R1, R3, R1 ; R1 ← [R1] [R3]

8. STOREX, R1 ; M[X] ← [R1] 60

Using Registers

 Registers are faster

 Shorter instructions

 The number of registers is smaller (e.g. 32

registers need 5 bits)

 Potential speedup

 Minimize the frequency with which data is

moved back and forth between the memory

and processor registers.

61

Instruction Execution and

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

62

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight-line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

63

Branching
N,R1Move

NUMn

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop

Program

Determine address of

"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

64

Condition Codes

 Condition code flags (bits)

 Condition code register / status register

 N (negative)

 Z (zero)

 V (overflow)

 C (carry)

 Different instructions affect different flags

65

Conditional Branch

Instructions

 Example:

 A: 1 1 1 1 0 0 0 0

 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

66

Status Bits

ALU

V Z N C

Zero Check

Cn

Cn-1

Fn-1

A B

F

67

Addressing Modes

Module - 2

68

Generating Memory Addresses

 How to specify the address of branch target?

 Can we give the memory operand address

directly in a single Add instruction in the loop?

 Use a register to hold the address of NUM1;

then increment by 4 on each pass through

the loop.

69

Addressing Modes

 The different ways in
which the location of
an operand is
specified in an
instruction are referred
to as addressing
modes.

Name Assembler syntax Addressingfunction

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (R i) EA = [Ri]

(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (R i ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i ,Rj) EA = [Ri] + [Rj] + X

and offset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment R i

Autodecrement (R i) Decrement R i ;

EA = [Ri]

 70

Effective Address (EA)

 In the addressing modes that follow, the

instruction does not give the operand or its

address explicitly. Instead, it provides

information from which an effective address

(EA) can be derived by the processor when

the instruction is executed.

 The effective address is then used to access

the operand.

71

Addressing Modes

 Implied
 AC is implied in “ADD M[AR]” in “One-Address” instr.

 TOS is implied in “ADD” in “Zero-Address” instr.

 Immediate
 The use of a constant in “MOV 5, R1”

or “MOV #5, R1” i.e. R1 ← 5

MOV #NUM1, R2 ; to copy the variable memory address

 Register
 Indicate which register holds the operand

 Direct Address
 Use the given address to access a memory location

 E.g. Move NUM1, R1

 Move R0, SUM

Opcode Mode ...

72

Addressing Modes

Indirect Addressing
 Indirect Addressing

 Indirection and Pointer

 Indirect addressing through a general purpose

register.

73

ADD (R1), R0

.

.

.

B Operand

R1 B

 Indicate the register (e.g. R1)

that holds the address of the

variable (e.g. B) that holds the

operand

ADD (R1), R0

 The register or memory location

that contain the address of an

operand is called a pointer

Addressing Modes

Indirect Addressing
 Indirect Addressing

 Indirect addressing through a memory addressing.

74

ADD (A), R0

.

.

.

B Operand

A B

 Indicate the memory variable

(e.g. A)that holds the address

of the variable (e.g. B) that

holds the operand

ADD (A), R0

Indirect Addressing

Example

 Addition of N numbers
1. Move N,R1 ; N = Numbers to add

2. Move #NUM1,R2 ; R2= Address of 1st no.

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = [NUM1] + [R0]

5. Add #4, R2 ; R2= To point to the next

; number

6. Decrement R1 ; R1 = [R1] -1

7. Branch>0 Loop ; Check if R1>0 or not if

; yes go to Loop

8. Move R0, SUM ; SUM= Sum of all no.

75

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 10 + 00 = 10

5. Add #4, R2 ; R2 = 10004H

6. Decrement R1 ; R1 = 4

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM=

76

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 20 + 10 = 30

5. Add #4, R2 ; R2 = 10008H

6. Decrement R1 ; R1 = 3

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM=

77

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 30 + 30 = 60

5. Add #4, R2 ; R2 = 1000CH

6. Decrement R1 ; R1 = 2

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM=

78

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 40 + 60 = 100

5. Add #4, R2 ; R2 = 10010H

6. Decrement R1 ; R1 = 1

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM=

79

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 50 + 100 = 150

5. Add #4, R2 ; R2 = 10014H

6. Decrement R1 ; R1 = 0

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM =

80

Example

 Addition of N numbers

1. Move N,R1 ; N = 5

2. Move #NUM1,R2 ; R2= 10000H

3. Clear R0 ; R0 = 00

4. Loop : Add (R2), R0 ; R0 = 50 + 100 = 150

5. Add #4, R2 ; R2 = 10014H

6. Decrement R1 ; R1 = 0

7. Branch>0 Loop ; Check if R1>0 if

; yes go to Loop

8. Move R0, SUM ; SUM = 150

81

Addressing Modes

Indexing and Arrays

 Indexing and Array

 The EA of the operand is generated by

adding a constant value to the contents of a

register.

 X(Ri) ; EA= X + (Ri) X= Signed number

 X defined as offset or displacement

82

Addressing Modes

Indexing and Arrays

 Index mode – the effective address of the operand

is generated by adding a constant value to the

contents of a register.

 Index register

 X(Ri): EA = X + [Ri]

 The constant X may be given either as an explicit

number or as a symbolic name representing a

numerical value.

 If X is shorter than a word, sign-extension is needed.

83

Addressing Modes

Indexing and Arrays

 In general, the Index mode facilitates access
to an operand whose location is defined
relative to a reference point within the data
structure in which the operand appears.

 2D Array

 (Ri, Rj) so EA = [Ri] + [Rj]

 Rj is called the base register

 3D Array

 X(Ri, Rj) so EA = X + [Ri] + [Rj]

84

Addressing Modes

Indexing and Arrays

R1 10000H

85

Address Memory

Add 20(R1), R2

.

.

.

.

10000H

Offset=20

.

.

.

.

10020H Operand

R1 20H

Address Memory

Add 10000H(R1), R2

.

.

.

.

10000H

Offset=20

.

.

.

.

10020H Operand

Offset is given as a Constant Offset is in the index register

Addressing Modes

Indexing and Arrays

 Array

 E.g. List of students marks

 Indexed addressing used in accessing test marks from

the list 86

Address Memory Comments

N n No. of students

LIST Student ID1

Student 1
LIST+4 Test 1

LIST+8 Test 2

LIST+12 Test 3

LIST+16 Student ID2

Student 2
LIST+20 Test 1

LIST+24 Test 2

LIST+28 Test 3

Addressing Modes

 Base Register
 EA = Base Register (Ri) + Relative Addr (X)

100

101

102

103

104

Ri = 100

0 0 0 A

X = 2

+

Could be Positive or
Negative

(2’s Complement)

Usually points to
the beginning of

an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

87

Addressing Modes

Indexing and Arrays

 Program to find the sum of marks of all subjects of reach students and store it in
memory.

1. Move #LIST, R0

2. Clear R1

3. Clear R2

4. Move #SUM, R2

5. Move N, R4

6. Loop : Add 4(R0), R1

7. Add 8(R0), R1

8. Add 12(R0),R1

9. Move R1, (R2)

10. Clear R1

11. Add #16, R0

12. Add #4, R2

13. Decrement R4

14. Branch>0 Loop

88

Addressing Modes

 Indexed
 EA = Index Register (Ri) + Relative Addr (Rj)

100

101

102

103

104

Rj = 100

1 1 0 A

Ri = 2

+

Could be Positive or
Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

89

Addressing Modes

Relative Addressing

 Relative mode – the effective address is determined

by the Index mode using the program counter in

place of the general-purpose register.

 X(PC) – note that X is a signed number

 Branch>0 LOOP

 This location is computed by specifying it as an

offset from the current value of PC.

 Branch target may be either before or after the

branch instruction, the offset is given as a singed

num.

90

100

101

102

103

104

0

1

2

Addressing Modes

Relative Addressing

 Relative Address

 EA = PC + Relative Addr (X)

X = 100

1 1 0 A

PC = 2

+

Could be Positive or
Negative

(2’s Complement)

91

Addressing Modes

Additional Modes

 Autoincrement mode – the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1

(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add

Decrement

LOOP

#NUM1,R2

N,R1Move

Move

Branch>0

92

Assembly

Language

93

Assembly Language

 Machine instructions are represented by patterns of 0s and 1s.
So these patterns represented by symbolic names called
“mnemonics”

 E.g. Load, Store, Add, Move, BR, BGTZ

 A complete set of such symbolic names and rules for their use
constitutes a programming language, referred to as an assembly
language.

 The set of rules for using the mnemonics and for specification of
complete instructions and programs is called the syntax of the
language.

 Programs written in an assembly language can be automatically
translated into a sequence of machine instructions by a program
called an assembler.

 The assembler program is one of a collection of utility programs
that are a part of the system software of a computer.

94

Assembly Language

 The user program in its original alphanumeric

text format is called a source program, and

the assembled machine-language program is

called an object program.

 The assembly language for a given computer

is not case sensitive.

 E.g. MOVE R1, SUM

95

Opcode Operand(s) or Address(es)

Assembler Directives

 In addition to providing a mechanism for representing
instructions in a program, assembly language allows the
programmer to specify other information needed to
translate the source program into the object program.

 Assign numerical values to any names used in a program.
 For e,g, name TWENTY is used to represent the value 20. This

fact may be conveyed to the assembler program through an
equate statement such as TWENTY EQU 20

 If the assembler is to produce an object program according
to this arrangement, it has to know

 How to interpret the names

 Where to place the instructions in the memory

 Where to place the data operands in the memory

96

Assembly language

representation for the program
 Label: Operation Operand(s) Comment

97

Assembly and Execution of

Programs

 A source program written in an assembly language must be
assembled into a machine language object program before it can
be executed. This is done by the assembler program, which
replaces all symbols denoting operations and addressing modes
with the binary codes used in machine instructions, and replaces
all names and labels with their actual values.

 A key part of the assembly process is determining the values that
replace the names. Assembler keep track of Symbolic name and
Label name, create table called symbol table.

 The symbol table created by scan the source program twice.

 A branch instruction is usually implemented in machine code by
specifying the branch target as the distance (in bytes) from the
present address in the Program Counter to the target instruction.
The assembler computes this branch offset, which can be
positive or negative, and puts it into the machine instruction.

98

Assembly and Execution of

Programs

 The assembler stores the object program on the secondary storage device
available in the computer, usually a magnetic disk. The object program must be
loaded into the main memory before it is executed. For this to happen, another
utility program called a loader must already be in the memory.

 Executing the loader performs a sequence of input operations needed to
transfer the machine-language program from the disk into a specified place in
the memory. The loader must know the length of the program and the address
in the memory where it will be stored.

 The assembler usually places this information in a header preceding the object
code (Like start/end offset address).

 When the object program begins executing, it proceeds to completion unless
there are logical errors in the program. The user must be able to find errors
easily.

 The assembler can only detect and report syntax errors. To help the user find
other programming errors, the system software usually includes a debugger
program.

 This program enables the user to stop execution of the object program at some
points of interest and to examine the contents of various processor registers and
memory locations.

99

Number Notation

 Decimal Number

 ADD #93,R1

 Binary Number

 ADD #%0101110,R1

 Hexadecimal Number

 ADD #$5D,R1

100

Types of Instructions

 Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

101

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

102

Data Manipulation Instructions

 Arithmetic

 Logical & Bit Manipulation

 Shift

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Negate NEG

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

Enable interrupt EI

Disable interrupt DI

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC
103

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare

(Subtract)
CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask

104

Conditional Branch

Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0

105

Basic Input/Output

Operations

106

I/O

 The data on which the instructions operate

are not necessarily already stored in memory.

 Data need to be transferred between

processor and outside world (disk, keyboard,

etc.)

 I/O operations are essential, the way they are

performed can have a significant effect on the

performance of the computer.

107

Program-Controlled I/O

Example

 Read in character input from a keyboard and
produce character output on a display screen.

 Rate of data transfer (keyboard, display, processor)

 Difference in speed between processor and I/O device
creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

108

Program-Controlled I/O

Example

- Registers

- Flags

- Device interface

109

DATAIN DATAOUT

SIN SOUT

Keyboard Display

Bus

Figure 2.19 Bus connection for processor , keyboard, and display.

Processor

Program-Controlled I/O

Example

 Machine instructions that can check the state

of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

110

Program-Controlled I/O

111

Memory Mapped I/O I/O Mapped I/O

Program-Controlled I/O

Example

 Memory-Mapped I/O – some memory address
values are used to refer to peripheral device
buffer registers. No special instructions are
needed. Also use device status registers.
 E.g. Movebyte DATAIN,R1

 Movebyte R1,DTATOUT

 READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT
MoveByte DATAIN, R1

 WRITEWAIT Testbit #3, OUTSTATUS
Branch=0 WRITEWAIT
MoveByte R1, DATAOUT

112

Program-Controlled I/O

Example

 Assumption – the initial state of SIN is 0 and the

initial state of SOUT is 1.

 Any drawback of this mechanism in terms of

efficiency?

 Two wait loopsprocessor execution time is wasted

 Alternate solution?

 Interrupt

113

Stacks

114

Stacks

 A stack is a list of data elements, usually words, with the
accessing restriction that elements can be added or
removed at one end of the list only. This end is called the
top of the stack, and the other end is called the bottom. The
structure is sometimes referred to as a pushdown stack.

 last-in–first-out (LIFO) stack working.

 The terms push and pop are used to describe placing a
new item on the stack and removing the top item from the
stack, respectively.

 The stack pointer, SP, is used to keep track of the address
of the element of the stack that is at the top at any given
time.

115

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

116

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

117

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

118

0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack

 PUSH

SP ← SP – 1

M[SP] ← DR

 POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

119

Queue

120

Queue

 FIFO basis

 Data are stored in and retrieved from a queue

on a first-in–first-out (FIFO) basis. Thus, if we

assume that the queue grows in the direction

of increasing addresses in the memory, new

data are added at the back (high-address

end) and retrieved from the front (low-

address end) of the queue.

121

Differences between a stack

and a queue

 Stack

 LIFO

 One end is fixed other

end for PUSH and

POP item

 One pointer used

 Fixed Size

 Queue

 FIFO

 One end is to add

item and other is to

remove item

 Two Pointer is used

 Not fixed size

122

Subroutines

123

Subroutines

 In a given program, it is often necessary to perform a particular
task many times on different data values. It is prudent to
implement this task as a block of instructions that is executed
each time the task has to be performed. Such a block of
instructions is usually called a subroutine.

 However, to save space, only one copy of this block is placed in
the memory, and any program that requires the use of the
subroutine simply branches to its starting location.

 When a program branches to a subroutine we say that it is
calling the subroutine. The instruction that performs this branch
operation is named a Call instruction.

 After a subroutine has been executed, the calling program must
resume execution, continuing immediately after the instruction
that called the subroutine. The subroutine is said to return to the
program that called it, and it does so by executing a Return
instruction.

124

Subroutines

 Since the subroutine may be called from different places in a
calling program, provision must be made for returning to the
appropriate location. The location where the calling program
resumes execution is the location pointed to by the updated
program counter (PC) while the Call instruction is being
executed.

 Hence, the contents of the PC must be saved by the Call
instruction to enable correct return to the calling program.

 The way in which a computer makes it possible to call and return
from subroutines is referred to as its subroutine linkage method.

 The simplest subroutine linkage method is to save the return
address in a specific location, which may be a register dedicated
to this function. Such a register is called the link register. When
the subroutine completes its task, the Return instruction returns
to the calling program by branching indirectly through the link
register.

125

Subroutines

 The Call instruction is just a special branch
instruction that performs the following
operations:

 Store the contents of the PC in the link register

 Branch to the target address specified by the Call
instruction

 The Return instruction is a special branch
instruction that performs the operation

 Branch to the address contained in the link
register

126

Subroutines

127

Subroutine Nesting and the

Processor Stack

 A common programming practice, called subroutine
nesting, is to have one subroutine call another.

 In this case, the return address of the second call is
also stored in the link register, overwriting its
previous contents. Hence, it is essential to save the
contents of the link register in some other location
before calling another subroutine. Otherwise, the
return address of the first subroutine will be lost.

 That is, return addresses are generated and used in
a last-in–first-out order. This suggests that the return
addresses associated with subroutine calls should
be pushed onto the processor stack.

128

Parameter Passing

 When calling a subroutine, a program must provide
to the subroutine the parameters, that is, the
operands or their addresses, to be used in the
computation. Later, the subroutine returns other
parameters, which are the results of the
computation. This exchange of information between
a calling program and a subroutine is referred to as
parameter passing.

 Parameter passing may be accomplished in several
ways. The parameters may be placed in registers, in
memory locations, or on the processor stack where
they can be accessed by the subroutine.

129

Program of subroutine

Parameters passed through registers.

 Calling Program

1. Move N, R1

2. Move #NUM1,R2

3. Call LISTADD

4. Move R0,SUM

 Subroutine

1. LISTADD: Clear R0

2. LOOP: Add (R2)+,R0

3. Decrement R1

4. Branch>0 LOOP

5. Return

130

Parameter Passing by Value

and by Reference

 Instead of passing the actual Value(s), the

calling program passes the address of the

Value(s). This technique is called passing by

reference.

 The second parameter is passed by value,

that is, the actual number of entries, is

passed to the subroutine.

131

Program of subroutine

Parameters passed on the stack.

 MoveMultiple R0-R2, -(SP)

 MoveMultiple to store contents of register R0

through R2 on he stack

132

Program of subroutine

Parameters passed on the stack.

133

The Stack Frame

 If the subroutine requires more space for local
memory variables, the space for these variables
can also be allocated on the stack this area of
stack is called Stack Frame.

 For e.g. during execution of the subroutine, six
locations at the top of the stack contain entries
that are needed by the subroutine. These
locations constitute a private work space for the
subroutine, allocated at the time the subroutine
is entered and deallocated when the subroutine
returns control to the calling program.

134

The Stack Frame

 Frame pointer (FP), for convenient
access to the parameters passed
to the subroutine and to the local
memory variables used by the
subroutine.

 In the figure, we assume that four
parameters are passed to the
subroutine, three local variables
are used within the subroutine,
and registers R2, R3, and R4
need to be saved because they
will also be used within the
subroutine.

 When nested subroutines are
used, the stack frame of the
calling subroutine would also
include the return address, as we
will see in the example that
follows.

135

Stack Frames for Nested

Subroutines

136

Stack Frames for Nested

Subroutines

137

Additional

Instructions

138

Logical Shifts

 Logical shift – shifting left (LShiftL) and shifting right
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift r ight LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .

139

Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Arithmetic shift right AShiftR #2,R0

R0

. . .

140

Rotate

Figure 2.32. Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate r ight without carry RotateR #2,R0

(a) Rotate left without carr y RotateL #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate r ight with carr y RotateRC #2,R0

R0

. . .

. . .

(b) Rotate left with carr y RotateLC #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

141

Multiplication and Division

 Not very popular (especially division)

 Multiply Ri, Rj

Rj ← [Ri] х [Rj]

 2n-bit product case: high-order half in R(j+1)

 Divide Ri, Rj

Rj ← [Ri] / [Rj]

Quotient is in Rj, remainder may be placed in R(j+1)

142

Logic Instructions

 And R2, R3, R4

 And #Value, R4, R2

 And #$0FF, R2, R2,

143

Encoding of

Machine

Instructions

144

Encoding of Machine

Instructions

 Assembly language program needs to be converted into machine
instructions. (ADD = 0100 in ARM instruction set)

 In the previous section, an assumption was made that all
instructions are one word in length.

 OP code: the type of operation to be performed and the type of
operands used may be specified using an encoded binary pattern

 Suppose 32-bit word length, 8-bit OP code (how many instructions
can we have?), 16 registers in total (how many bits?), 3-bit
addressing mode indicator.

 Add R1, R2

 Move 24(R0), R5

 LshiftR #2, R0

 Move #$3A, R1

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

145

Encoding of Machine

Instructions

 What happens if we want to specify a memory

operand using the Absolute addressing mode?

 Move R2, LOC

 14-bit for LOC – insufficient

 Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info

146

Encoding of Machine

Instructions

 Then what if an instruction in which two operands

can be specified using the Absolute addressing

mode?

 Move LOC1, LOC2

 Solution – use two additional words

 This approach results in instructions of variable

length. Complex instructions can be implemented,

closely resembling operations in high-level

programming languages – Complex Instruction Set

Computer (CISC)

147

Encoding of Machine

Instructions

 If we insist that all instructions must fit into a single

32-bit word, it is not possible to provide a 32-bit

address or a 32-bit immediate operand within the

instruction.

 It is still possible to define a highly functional

instruction set, which makes extensive use of the

processor registers.

 Add R1, R2 ----- yes

 Add LOC, R2 ----- no

 Add (R3), R2 ----- yes

148

